How fungi elude antifungal treatments (2024)

Every year, life-threating invasive fungal infections afflict more than 2 million individuals globally. Mortality rates for these infections are high, even when patients receive treatment.

Aspergillus fumigatus,the most frequent cause of invasive fungal infection in people with suppressed immune systems, is responsible for approximately 100,000 deaths annually around the world. Poor treatment outcomes result from therapeutic failures and the fungi’s resistance to existing drugs.

A new multi-institutional study led by researchers at Michigan State University has characterized how fungi adapt to restructure their cell walls, effectively thwarting current antifungal medications. This new information opens opportunities to devise more effective use of antifungal drugs. The results were published July 31 in the journalNature Communications.

“In order to improve the use of and develop new antifungal drugs, we need to understand the target,” saidTuo Wang, the inaugural Carl H. Brubaker Jr. Endowed Associate Professor in theDepartment of Chemistryat Michigan State University and lead author on the study. “This is not done easily, because the cell wall is very complex.”

The study was also selected to be featured among the journal'sEditors' Highlightsas one of the 50 best papers Nature Communications has published recently in the area of Microbiology and Infectious Diseases.

With this work, Wang and his team believe they have laid the foundation for pharmaceutical companies to adapt or combine existing antifungal drugs to help overcome their previous limitations.

Cellular remodeling

Antifungal drugs target molecules in the fungal cell wall, a flexible, but rigid outer layer that provides the cell protection. By rupturing the protective structure, the drugs kill the fungal cell to control the fungal infection.

One of the newest families of antifungal drugs, echinocandins, target essential building blocks in the cell wall known as ß-glucans. This attack should be effective, but fungi are extraordinary organisms that have evolved survival strategies to rebuild and reinforce the wall’s architecture.

In their new report, Wang and his colleagues determined the atom-by-atom configuration of the cell wall after exposure to echinocandins. To do this, they used biochemical analysis and state-of-the art imaging techniques, including solid-state nuclear magnetic resonance, dynamic nuclear polarization, transmission electron microscope and atomic force microscopy.

With biochemical analysis, state-of-the-art imaging technology and computer simulations, research led by scientists at Michigan State University has shown how fungi remodel their cell walls to thwart antifungal drugs. Credit: Figure adapted from Dickwella Widange et al. Nat. Commun. (2024).

They then shared the results with a team at the MSU-Department of Energy Plant Research Laboratory, orPRL. The PRL team developed molecular dynamic simulations to illustrate nanoscale changes that unfold over hours to days in the fungal cell wall.

“NMR tells us that things are reacting but there is no picture,” saidJosh Vermaas, assistant professor in the PRL. He’s also affiliated with the MSU Department ofBiochemistry and Molecular Biologyand theMolecular Plant Sciences Program.

Vermaas is a co-author on the study, who, together withDaipayan Sarkar, a research associate in the PRL, conducted the simulations portion of the study.

We created visually appealing pictures of how molecules come together at the nanoscale, simulating the molecular details that we otherwise wouldn’t get access to,” Vermaas said.

The team found that when exposed to echinocandin, the fungi enhance their survival odds by making specific changes to the structure and organization of the components in their cell walls. In particular, as the concentration of ß-glucans goes down, fungi rapidly increase the presence of different, but related molecules to regenerate and preserve the integrity of the cell wall.

In addition, polysaccharide structures, such as galactomannan and galactosaminogalactan, are reshuffled to enhance the stiffness and hydrophobic nature of the polymer network in the membrane.

“We found the supramolecular assembly has been fully reshuffled,” said Wang. “This dynamic dance unfolds both at the chemical and nanoscale levels, rendering the cell wall sturdier yet pliable, ensuring survival under stress.”

Not only did the fungal response to the drug increase the strength and resilience of the cell wall, the new architecture also eliminates the drug target in many instances. This renders the drugs ineffective against fungal spread.

“Biology is wild,” said Vermaas. “Evolutionary pressure allowed for these kinds of mechanisms to develop, but holy moly. How did fungi figure this out?”

Fungal spores are ubiquitous in the environment, but a healthy person’s immune system can sweep the spores from the body. People with compromised immune systems, however, are susceptible to the spores taking hold. That means, for example, people undergoing cancer treatments, receiving organ transplants or fighting other diseases, including AIDS and COVID, will have a harder time clearing the intruders.

In the body, fungi become established in the lungs and send long, branching structures called hyphae deep into lung tissue. Although drugs or surgery can alleviate an infection, once it’s in place, it is almost impossible to eliminate.

Only four families of an antifungal drugs are currently on the market, each limited by the evolutionary fungal roadblocks, such as the one identified in this study. That’s why the availability of effective antifungal drugs is needed now more than ever, Wang said.

“We are doing the fundamental science,” said Wang. “Now that we understand how fungi survive antifungal treatment, this knowledge will be helpful for the development of new drugs.”

Also contributing to the study were Isha Gautam and Shi-You Ding at MSU; Frederic Mentink-Vigier at the National High Magnetic Field Laboratory; Andrew Lipton at the Pacific Northwest National Laboratory, Thierry Fontaine at Paris Cité University; Jean-Paul Latgé at the University of Crete and Ping Wang at Louisiana State University Health Sciences Center.

This story originally appeared on the College of Natural Science website.

How fungi elude antifungal treatments (2024)
Top Articles
Tomodachi Life QR Codes - Mii
Who Plays Young Beth and Rip on ‘Yellowstone’? Meet Kylie Rogers and Kyle Red Silverstein
Funny Roblox Id Codes 2023
Golden Abyss - Chapter 5 - Lunar_Angel
Www.paystubportal.com/7-11 Login
Joi Databas
DPhil Research - List of thesis titles
Shs Games 1V1 Lol
Evil Dead Rise Showtimes Near Massena Movieplex
Steamy Afternoon With Handsome Fernando
Which aspects are important in sales |#1 Prospection
Detroit Lions 50 50
18443168434
Newgate Honda
Zürich Stadion Letzigrund detailed interactive seating plan with seat & row numbers | Sitzplan Saalplan with Sitzplatz & Reihen Nummerierung
Grace Caroline Deepfake
978-0137606801
Nwi Arrests Lake County
Justified Official Series Trailer
London Ups Store
Committees Of Correspondence | Encyclopedia.com
Pizza Hut In Dinuba
Jinx Chapter 24: Release Date, Spoilers & Where To Read - OtakuKart
How Much You Should Be Tipping For Beauty Services - American Beauty Institute
Free Online Games on CrazyGames | Play Now!
Sizewise Stat Login
VERHUURD: Barentszstraat 12 in 'S-Gravenhage 2518 XG: Woonhuis.
Jet Ski Rental Conneaut Lake Pa
Unforeseen Drama: The Tower of Terror’s Mysterious Closure at Walt Disney World
Ups Print Store Near Me
C&T Wok Menu - Morrisville, NC Restaurant
How Taraswrld Leaks Exposed the Dark Side of TikTok Fame
University Of Michigan Paging System
Dashboard Unt
Access a Shared Resource | Computing for Arts + Sciences
Black Lion Backpack And Glider Voucher
Gopher Carts Pensacola Beach
Duke University Transcript Request
Lincoln Financial Field, section 110, row 4, home of Philadelphia Eagles, Temple Owls, page 1
Jambus - Definition, Beispiele, Merkmale, Wirkung
Ark Unlock All Skins Command
Craigslist Red Wing Mn
D3 Boards
Jail View Sumter
Nancy Pazelt Obituary
Birmingham City Schools Clever Login
Thotsbook Com
Funkin' on the Heights
Vci Classified Paducah
Www Pig11 Net
Ty Glass Sentenced
Latest Posts
Article information

Author: Frankie Dare

Last Updated:

Views: 5839

Rating: 4.2 / 5 (53 voted)

Reviews: 84% of readers found this page helpful

Author information

Name: Frankie Dare

Birthday: 2000-01-27

Address: Suite 313 45115 Caridad Freeway, Port Barabaraville, MS 66713

Phone: +3769542039359

Job: Sales Manager

Hobby: Baton twirling, Stand-up comedy, Leather crafting, Rugby, tabletop games, Jigsaw puzzles, Air sports

Introduction: My name is Frankie Dare, I am a funny, beautiful, proud, fair, pleasant, cheerful, enthusiastic person who loves writing and wants to share my knowledge and understanding with you.